Mak, Man KwongMan KwongMakHarko, TiberiuTiberiuHarko2025-12-302025-12-3020191618-3932https://hdl.handle.net/20.500.12740/23751We present some exact integrability cases of the extended Li ' enard equation y + f(y)(y)n + k(y)(y)m + g(y)y + h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are arbitrary functions. The solutions are obtained by transforming the equation Li ' enard equation to an equivalent first kind first order Abel type equation given by dv dy = f(y)v3- n + k(y)v3- m + g(y)v2 + h(y)v3, with v = 1/y. As a first step in our study we obtain three integrability cases of the extended quadratic-cubic Li ' enard equation, corresponding to n = 2 and m = 3, by assuming that particular solutions of the associated Abel equation are known. Under this assumption the general solutions of the Abel and Li ' enard equations with coefficients satisfying some differential conditions can be obtained in an exact closed form. With the use of the Chiellini integrability condition, we show that if a particular solution of the Abel equation is known, the general solution of the extended quadratic cubic Li ' enard equation can be obtained by quadratures. The Chiellini integrability condition is extended to generalized Abel equations with g(y) = 0 and h(y) = 0, and arbitrary n and m, thus allowing to obtain the general solution of the corresponding Li ' enard equation. The application of the generalized Chiellini condition to the case of the reduced Riccati equation is also considered.Acceso AbiertoAbel equationLienard equationgeneral solutionsintegrability conditionsOn the Integrability of the Abel and of the Extended Lienard Equationshttp://dx.doi.org/10.1007/s10255-019-0847-1