Repositorio Académico Institucional
Conocimiento Aplicado para la Innovación y el Desarrollo
Mostrar el registro sencillo del ítem
Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state
dc.contributor.author | Man, Mak | |
dc.contributor.author | Harko1, T. | |
dc.date.accessioned | 2020-09-14T15:24:03Z | |
dc.date.available | 2020-09-14T15:24:03Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Astrophys Space Sci (2016) 361:283 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12740/15777 | |
dc.description.abstract | Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-OppenheimerVolkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n = 1, and for the indexes n = 1/2 and n = 1/5, respectively. The case of n = 3 is also considered. In each case the exact power series solution is compared with the exact B T. Harko t.harko@ucl.ac.uk M.K. Mak mankwongmak@gmail.com 1 Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca 400084, Romania 2 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom 3 Departamento de Física, Facultad de Ciencias Naturales, Universidad de Atacama, Copayapu 485, Copiapó, Chile numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained. | |
dc.description.abstract | RELATIVIST FUID SPHERE | |
dc.description.abstract | EXACT POWER SERIES SOLUTIONS | |
dc.description.abstract | LINEAR BAROTROPIC EQUATIONS OF STATE | |
dc.description.abstract | POLYTROPIC EQUATION OF STATE | |
dc.language.iso | en | |
dc.rights | Atribución-SinDerivadas 3.0 Chile | |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/cl/ | |
dc.source.uri | https://doi.org/10.1007/s10509-016-2875-0 | |
dc.subject.other | ECUACIÓN POLITROPICA DE ESTADO | |
dc.title | Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state | |
dc.type | Artículo de Revista | |
dc.relation.vrip | http://dx.doi.org/10.1007/s10509-016-2875-0 | |
dc.unidad | Física | |
dc.database | WoS-Scopus |
Archivos en el ítem
- Nombre:
- harko2016.pdf
- Tamaño:
- 1.106Mb
- Formato: