Repositorio Académico Institucional

Conocimiento Aplicado para la Innovación y el Desarrollo

On the Integrability of the Abel and of the Extended Lienard Equations

Fecha de publicación:
2019
Unidad:
Investigador Adjunto
Datos de publicación:
Acta Mathematicae Applicatae Sinica, English Series volume 35, pages722–736(2019)
Índice de citas:
Science Citation Index Expanded
Enlace:
https://www.doi.org/10.1007/s10255-019-0847-1
Palabras Claves:
Base de datos:
WoS-Scopus

Descripción:
We present some exact integrability cases of the extended Liénard equation y″ + f(y)(y′)n + k(y)(y′)m + g(y)y′ + h(y) = 0, with n > 0 and m > 0 arbitrary constants, while f(y), k(y), g(y), and h(y) are arbitrary functions. The solutions are obtained by transforming the equation Liénard equation to an equivalent first kind first order Abel type equation given by dvdy=f(y)v3−n+k(y)v3−m+g(y)v2+h(y)v3, with υ = 1/y′. As a first step in our study we obtain three integrability cases of the extended quadratic-cubic Liénard equation, corresponding to n = 2 and m = 3, by assuming that particular solutions of the associated Abel equation are known. Under this assumption the general solutions of the Abel and Liénard equations with coefficients satisfying some differential conditions can be obtained in an exact closed form. With the use of the Chiellini integrability condition, we show that if a particular solution of the Abel equation is known, the general solution of the extended quadratic cubic Liénard equation can be obtained by quadratures. The Chiellini integrability condition is extended to generalized Abel equations with g(y) ≡ 0 and h(y) ≡ 0, and arbitrary n and m, thus allowing to obtain the general solution of the corresponding Liénard equation. The application of the generalized Chiellini condition to the case of the reduced Riccati equation is also considered.

Ver metadatos técnicos Copiar URL persistente
Atribución-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-SinDerivadas 3.0 Chile

Mi biblioteca

Suscripción

Reciba las novedades y nuevas incorporaciones a las colecciones del Repositorio Digital

Suscribirse