Repositorio Académico Institucional

Conocimiento Aplicado para la Innovación y el Desarrollo

Mostrar el registro sencillo del ítem

Modern Computer Vision Techniques for X-Ray Testing in Baggage Inspection

dc.contributor.authorRiffo, Vladimir
dc.contributor.authorMery, Domingo
dc.contributor.authorSvec, Erick
dc.contributor.authorArias, Marco
dc.contributor.authorSaavedra, Jose M.
dc.contributor.authorBanerjee, Sandipan
dc.date.accessioned2020-09-14T15:25:18Z
dc.date.available2020-09-14T15:25:18Z
dc.date.issued2017
dc.identifier.citationIEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(4), 682–692
dc.identifier.urihttps://hdl.handle.net/20.500.12740/16082
dc.description.abstractX-ray screening systems have been used to safeguard environments in which access control is of paramount importance. Security checkpoints have been placed at the entrances to many public places to detect prohibited items, such as handguns and explosives. Generally, human operators are in charge of these tasks as automated recognition in baggage inspection is still far from perfect. Research and development on X-ray testing is, however, exploring new approaches based on computer vision that can be used to aid human operators. This paper attempts to make a contribution to the field of object recognition in X-ray testing by evaluating different computer vision strategies that have been proposed in the last years. We tested ten approaches. They are based on bag of words, sparse representations, deep learning, and classic pattern recognition schemes among others. For each method, we: 1) present a brief explanation; 2) show experimental results on the same database; and 3) provide concluding remarks discussing pros and cons of each method. In order to make fair comparisons, we define a common experimental protocol based on training, validation, and testing data (selected from the public GDXray database). The effectiveness of each method was tested in the recognition of three different threat objects: 1) handguns; 2) shuriken (ninja stars); and 3) razor blades. In our experiments, the highest recognition rate was achieved by methods based on visual vocabularies and deep features with more than 95% of accuracy. We strongly believe that it is possible to design an automated aid for the human inspection task using these computer vision algorithms
dc.language.isoen
dc.rightsAtribución-SinDerivadas 3.0 Chile
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/cl/
dc.source.urihttps://doi.org/10.1109/TSMC.2016.2628381
dc.subjectBAGGAGE SCREENING
dc.subjectDEEP LEARNING
dc.subjectIMPLICIT SHAPE MODEL (ISM)
dc.subjectOBJECT CATEGORIZATION
dc.subjectOBJECT DETECTION
dc.subjectOBJECT RECOGNITION
dc.subjectSPARSE REPRESENTATIONS
dc.subjectTHREAT OBJECTS
dc.subjectX-RAY TESTING
dc.subject.otherREVISIÒN DE EQUIPAJE
dc.titleModern Computer Vision Techniques for X-Ray Testing in Baggage Inspection
dc.typeArtículo de Revista
dc.indice.citasScience Citation Index Expanded
dc.relation.vriphttps://doi.org/10.1109/TSMC.2016.2628381
dc.unidadInformática
dc.databaseWoS-Scopus


Archivos en el ítem

Thumbnail
Nombre:
mery2016.pdf
Tamaño:
1.895Mb
Formato:
PDF
  Ver/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-SinDerivadas 3.0 Chile

Mi biblioteca

Suscripción

Reciba las novedades y nuevas incorporaciones a las colecciones del Repositorio Digital

Suscribirse